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PREFACE.

THE present work has two main objects. One of these, the proof
that all pure mathematics deals exclusively with concepts definable
in terms of a very small number of fundamental logical concepts, and
that all its propositions are deducible from a very small number of
fundamental logical principles, is undertaken in Parts IL—VIIL. of this
Volume, and will be established by strict symbolic reasoning in Volume 11.
The demonstration of this thesis has, if I am not mistaken, all the
certainty and precision of which mathematical demonstrations are capable.
As the thesis is very recent among mathematicians, and is almost
universally denied by philosophers, I have undertaken, in this volume,
to defend its various parts, as occasion arose, against such adverse
theories as appeared most widely held or most diflicult to disprove.
I have also endeavoured to present, in language as untechnical as
possible, the more important stages in the deductions by which the
thesis is established.

The other object of this work, which occupies Part I., is the
explanation of the fundamental concepts which mathematics accepts
as indefinable. This is a purely philosophical task, and I cannot flatter
myself that I have done more than indicate a vast field of inquiry, and
give a sample of the methods by which the inquiry may be conducted.
The discussion of indefinables—which forms the chief part of philosophical
logic—is the endeavour to see clearly, and to make others see clearly,
the entities concerned, in order that the mind may have that kind of
acquaintance with them which it has with redness or the taste of a
pineapple. Where, as in the present case, the indefinables are obtained
primarily as the necessary residue in a process of analysis, it is often
easier to know that there must be such entities than actually to perceive
them ; there is a process analogous to that which resulted in the discovery
of Neptune, with the difference that the final stage—the search with a
mental telescope for the entity which has been inferred—is often the
most difficult part of the undertaking. In the case of classes, I must
confess, I have failed to perceive any concept fulfilling the conditions
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requisite for the notion of class. And the contradiction discussed in
Chapter x. proves that something is amiss, but what this is I have
hitherto failed to discover. .

The second volume, in which I have had the great good fortune
to secure the collaboration of Mr A. N. Whitehead, will be addressed
exclusively to mathematicians; it will contain chains of deductions,
from the premisses of symbolic logic through Arithmetic, finite and
infinite, to Geometry, in an order similar to that adopted in the present
volume ; it will also contain various original developments, in which the
method of Professor Peano, as supplemented by the Logic of Relations,
has shown itself a powerful instrument of mathematical investigation.

The present volume, which may be regarded either as a commentary
upon, or as an introduction to, the second volume, is addressed in equal
measure to the philosopher and to the mathematician; but some parts
will be more interesting to the one, others to the other. I should advise
mathematicians, unless they are specially interested in Symbolic Logic,
to begin with Part IV., and only refer to earlier parts as occasion arises.
The following portions are more specially philosophical: Part I
(omitting Chapter 11.); Part II., Chapters x1., xv., xv1., xviL; Part IIL;
Part IV., §207, Chapters xxvi., xxvir., xxxr; Part V., Chapters xvi.,
xuir., xuir; Part VI, Chapters L., 1., vir.; Part VII, Chaptérs LITL.,
LIV., LV., LVIL, LVIIL; and the two Appendices, which belong to Part L.,
and should be read in connection with it. Professor Frege’s work, which
largely anticipates my own, was for the most part unknown to me when
the printing of the present work began; I had seen his Grundgesetze
der Arithmetik, but, owing to the great difficulty of his symbolism, I had
failed to grasp its importance or to understand its contents. The only
method, at so late a stage, of doing justice to his work, was to devote
an Appendix to it; and in some points the views contained in the
Appendix differ from those in Chapter vi., especially in §§71, 73, 74.
On questions discussed in these sections, I discovered errors after passing
the sheets for the press; these errors, of which the chief are the denial
of the null-class, and the identification of a term with the class whose
only member it is, are rectified in the Appendices. The subjects
treated are so difficult that I feel little confidence in my present
opinions, and regard any conclusions which may be advocated as
essentially hypotheses.

A few words as to the origin of the present work may serve to
show the importance of the questions discussed. About six years ago,
I began an investigation into the philosophy of Dynamics. I was
met by the difficulty that, when a particle is subject to several forces,
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no one of the component accelerations actually occurs, but only
the resultant acceleration, of which they are not parts; this fact
rendered illusory such causation of particulars by particulars as is
affirmed, at first sight, by the law of gravitation. It appeared also that
the difficalty in regard to absolute motion is insoluble on a relational
theory of space. From these two questions I was led to a re-examination
of the principles of Geometry, thence to the philosophy of continuity
and infinity, and thence, with a view to discovering the meaning of the
word any, to Symbolic Logic. The final outcome, as regards the
philosophy of Dynamics, is perhaps rather slender; the reason of this
is, that almost all the problems of Dynamics appear to me empirical,
and therefore outside the scope of such a work as the present. Many
very interesting questions have had to be omitted, especially in Parts
VI. and VII, as not relevant to my purpose, which, for fear of
misunderstandings, it may be well to explain at this stage.

When actual objects are counted, or when Geometry and Dynamics
are applied to actual space or actual matter, or when, in any other way,
mathematical reasoning is applied to what exists, the reasoning employed
has a form not dependent upon the objects to which it is applied being
just those objects that they are, but only upon their having certain
general properties. In pure mathematics, actual objects in the world
of existence will never be in question, but only'hypothetiéal objects
having those general properties upon which depends whatever deduction
is being considered; and these general properties will always be
expressible in terms of the fundamental concepts which I have called
logical constants. Thus when space or motion is spoken of in pure
mathematics, it is not actual space or actual motion, as we know them
in experience, that are spoken of, but any entity possessing those abstract
general properties of space or motion that are employed in the reasonings
of geometry or dynamics. "The question whether these properties belong,
‘as a matter of fact, to actual space or actual motion, is irrelevant to pure
mathematics, and therefore to the present work, being, in my opinion,
a purely empirical question, to be investigated in the laboratory or the
observatory. Indirectly, it is true, the discussions connected with pure
mathematics have a very important bearing upon such empirical questions,
since mathematical space and motion are held by many, perhaps most,
philosophers to be self-contradictory, and therefore necessarily different
from actual space and motion, whereas, if the views advocated in the
following pages be valid, no such self-contradictions are to be found in
mathematical space and motion. But extra-mathematical considerations
of this kind have been almost wholly excluded from the present work.
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On fundamental questions of philosophy, my position, in all its chief
features, is derived from Mr G. E. Moore. I have accepted from him
the non-existential nature of propositions (except such as happen to
assert existence) and their independence of any knowing mind; also
the pluralism which regards the world, both that of existents and
that of entities, as composed of an infinite number of mutually
independent entities, with relations which are ultimate, and not
reducible to adjectives of their terms or of the whole which these
compose. Before learning these views from him, I found myself
completely unable to construct any philosophy of arithmetic, whereas
their acceptance brought about an immediate liberation from a large
number of difficulties which I believe to be otherwise insuperable.
The doctrines just mentioned are, in my opinion, quite indispensable
to any even tolerably satisfactory philosophy of mathematics, as I hope
the following pages will show. But I must leave it to my readers to
judge how far the reasoning assumes these doctrines, and how far it
supports them. Formally, my premisses are simply assumed ; but the
fact that they allow mathematics to be true, which most current
philosophies do not, is surely a powerful argument in their favour.

In Mathematics, my chief obligations, as is indeed evident, are to
Georg Cantor and Professor Peano. If I had become acquainted
sooner with the work of  Professor Frege, I should have owed a
great deal to him, but as it is I arrived independently at many
results which he. had already established. At every stage of my work,
I have been assisted more than I can express by the suggestions, the
criticisms, and the generous encouragement of Mr A. N. Whitehead ;
he also has kindly read my proofs, and greatly improved the final
expression of a very large number of passages. Many useful hints
I owe also to Mr W. E. Johnson; and in the more philosophical parts
of the book I owe much to Mr G. E. Moore besides the general position
which underlies the whole.

In the endeavour to cover so wide a field, it has been impossible to
acquire an exhaustive knowledge of the literature. There are doubtless
many important works with which I am unacquainted ; but where the
labour of thinking and writing necessarily absorbs so much time, such
ignorance, however regrettable, seems not wholly avoidable.

Many words will be found, in the course of discussion, to be defined
in senses apparently departing widely from common usage. Such
departures, I must ask the reader to believe, are never wanton, but have
been made with great reluctance. In philosophical matters, they have
been necessitated mainly by two causes. .First, it often happens that
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two cognate notions are both to be considered, and that language has
two names for the one, but none for the other. It is then highly
convenient to distinguish between the two names commonly used as
synonyms, keeping one for the usual, the other for the hitherto nameless
sense. 'The other cause arises from philosophical disagreement with
received views. Where two qualities are commonly supposed inseparably
conjoined, but are here regarded as separable, the name which has
applied to their combination will usually have to be restricted to one
or other. For example, propositions are commonly regarded as (1) true
or false, (2) mental. Holding, as I do, that what is true or false is not
in general mental, I require a name for the true or false as such, and
this name can scarcely be other than proposition. In such a case, the
departure from usage is in no degree arbitrary. As regards mathematical
terms, the necessity for establishing the existence-theorem in each case—
i.e. the proof that there are entities of the kind in question—has led to
many definitions which appear widely different from the notions usually
attached to the terms in question. Instances of this are the definitions
of cardinal, ordinal and complex numbers. In the two former of these,
and in many other cases, the definition as a class, derived from the
principle of abstraction, is mainly recommended by the fact that it
leaves no doubt as to the existence-theorem. But in many instances of
such apparent departure from usage, it may be doubted whether more
has been done than to give precision to a notion which had hitherto
been more or less vague.

For publishing a work containing so many unsolved difficulties, my
apology is, that investigation revealed no mnear prospect of adequately
resolving the contradiction discussed in Chapter x., or of acquiring a
better insight into the nature of classes. The repeated discovery of errors
in solutions which for a time had satisfied me caused these problems to
appear such as would have been only concealed by any seemingly satis-
factory theories which a slightly longer reflection might have produced ;
it seemed better, therefore, merely to state the difficulties, than to wait
until I had become persuaded of the truth of some almost certainly
erroneous doctrine. -

My thanks are due to the Syndics of the University Press, and to
their Secretary, Mr R. T. Wright, for their kindness and courtesy
in regard to the present volume.

Lonpon,
December, 1902,
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